From 1 - 10 / 45
  • This dataset contains scanned geomagnetic absolute observation records from Australian Geomagnetic Observatory: Charters Towers (CTA). Files names delineate the observatory, observation year, type of form and folder. e.g. CTA2000OBS_19 (CTA: Charters Towers Observatory)(2000: Year)(OBS: Observation Form)(19: Folder). Files are stored as station and year based PDF and individual tiff files per page.

  • This dataset contains scanned geomagnetic absolute observation records from Australian Geomagnetic Observatory: Alice Springs (ASP). Files names delineate the observatory, observation year, type of form and folder. e.g. ASP2000OBS_19 (ASP: Alice Springs Observatory)(2000: Year)(OBS: Observation Form)(19: Folder). Files are stored as station and year based PDF and individual tiff files per page.

  • This dataset contains scanned geomagnetic absolute observation records from Australian Geomagnetic Observatory: Mawson (MAW). Files names delineate the observatory, observation year, type of form and folder. e.g. MAW2000OBS_19 (MAW: Mawson Observatory)(2000: Year)(OBS: Observation Form)(19: Folder). Files are stored as station and year based PDF and individual tiff files per page.

  • This dataset contains scanned geomagnetic absolute observation records from Australian Geomagnetic Observatory: Gnangara (GNA). Files names delineate the observatory, observation year, type of form and folder. e.g. GNA2000OBS_19 (GNA: Gnangara Observatory)(2000: Year)(OBS: Observation Form)(19: Folder). Files are stored as station and year based PDF and individual tiff files per page.

  • This dataset contains scanned geomagnetic absolute observation records from Australian Geomagnetic Observatory: Kakadu (KDU). Files names delineate the observatory, observation year, type of form and folder. e.g. KDU2000OBS_19 (KDU: Kakadu Observatory)(2000: Year)(OBS: Observation Form)(19: Folder). Files are stored as station and year based PDF and individual tiff files per page.

  • <p>The Northern Territory Geological Survey (NTGS) designed the Mount Peake-Crawford survey to provide high resolution magnetic, radiometric and elevation data in the area. It is anticipated that the data from the survey would help attract explorers into ‘greenfield’ terranes and contribute to the discovery of the next generation of major mineral and energy deposits in the Northern Territory. A total of 120,000 line km of regional data (200m line spacing) and additional infill data (100m line spacing), flown at 60m flight height were acquired during the survey between July and October 2019. The survey was managed by Geoscience Australia. <p>Various grids were produced from the Mount Peake-Crawford Airborne Magnetic and Radiometric Survey dataset and simultaneously merged into a single grid file. The final grid retains all of the information from the input data and is levelled to the national map compilations produced by Geoscience Australia. The merged grids have a cell size of 20m. <p>The following merged grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• NASVD-filtered potassium concentration grid (%). <p>• NASVD-filtered thorium concentration grid (ppm). <p>• NASVD-filtered uranium concentration grid (ppm).

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 2000 by the SA Government, and consisted of UNKNOWN line-kilometres of data at 300.0m line spacing and 80.0m terrain clearance.

  • This dataset contains scanned geomagnetic magnetogram records from Mawson Geomagnetic Observatory. Files names delineate the observatory, observation year, type of data, month range, folder and page. e.g. TOO 1985 GRAM - JUL - AUG - 73_00031 (TOO: Toolangi Observatory)(1985: Year)(GRAM: Magnetogram)(JUL - AUG: month range)(73_00031: Folder and page). Files are stored as station and year based PDF and individual tiff files per page.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the GA302 Capel and Faust Basins MSS survey were acquired in 2006 for Geoscience Australia. This survey acquired a range of pre-competitive geological and geophysical data that included seismic reflection, gravity, magnetic and swath bathymetry measurements, as well as seafloor dredge samples.

  • This dataset contains scanned geomagnetic absolute observation records from Australian Geomagnetic Observatories. Files names delineate the observatory, observation year, type of form and folder. e.g. CTA2000OBS_19 (CTA: Charters Towers Observatory)(2000: Year)(OBS: Observation Form)(19: Folder). Files are stored as station and year based PDF and individual tiff files per page.